2 resultados para genetic susceptibility

em Instituto Nacional de Saúde de Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work was focused on a multi-purpose estuarine environment (river Sado estuary, SW Portugal) around which a number of activities (e.g., fishing, farming, heavy industry, tourism and recreational activities) coexist with urban centres with a total of about 200 000 inhabitants. Based on previous knowledge of the hazardous chemicals within the ecosystem and their potential toxicity to benthic species, this project intended to evaluate the impact of estuarine contaminants on the human and ecosystem health. An integrative methodology based on epidemiological, analytical and biological data and comprising several lines of evidence, namely, human contamination pathways, human health effects, consumption of local produce, estuarine sediments, wells and soils contamination, effects on commercial benthic organisms, and genotoxic potential of sediments, was used. The epidemiological survey confirmed the occurrence of direct and indirect (through food chain) exposure of the local population to estuarine contaminants. Furthermore, the complex mixture of contaminants (e.g., metals, pesticides, polycyclic aromatic hydrocarbons) trapped in the estuary sediments was toxic to human liver cells exposed in vitro, causing cell death, oxidative stress and genotoxic effects that might constitute a risk factor for the development of chronic-degenerative diseases, on the long term. Finally, the integration of data from several endpoints indicated that the estuary is moderately impacted by toxicants that affect also the aquatic biota. Nevertheless, the human health risk can only be correctly assessed through a biomonitoring study including the quantification of contaminants (or metabolites) in biological fluids as well as biomarkers of early biological effects (e.g., biochemical, genetic and omics-based endpoints) and genetic susceptibility in the target population. Data should be supported by a detailed survey to assess the impact of the contaminated seafood and local farm products consumption on human health and, particularly, on metabolic diseases or cancer development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insights into the genomic adaptive traits of Treponema pallidum, the causative bacterium of syphilis, have long been hampered due to the absence of in vitro culture models and the constraints associated with its propagation in rabbits. Here, we have bypassed the culture bottleneck by means of a targeted strategy never applied to uncultivable bacterial human pathogens to directly capture whole-genome T. pallidum data in the context of human infection. This strategy has unveiled a scenario of discreet T. pallidum interstrain single-nucleotide-polymorphism-based microevolution, contrasting with a rampant within-patient genetic heterogeneity mainly targeting multiple phase-variable loci and a major antigen-coding gene (tprK). TprK demonstrated remarkable variability and redundancy, intra- and interpatient, suggesting ongoing parallel adaptive diversification during human infection. Some bacterial functions (for example, flagella- and chemotaxis-associated) were systematically targeted by both inter- and intrastrain single nucleotide polymorphisms, as well as by ongoing within-patient phase variation events. Finally, patient-derived genomes possess mutations targeting a penicillin-binding protein coding gene (mrcA) that had never been reported, unveiling it as a candidate target to investigate the impact on the susceptibility to penicillin. Our findings decode the major genetic mechanisms by which T. pallidum promotes immune evasion and survival, and demonstrate the exceptional power of characterizing evolving pathogen subpopulations during human infection.